RPG339 发表于 2006-12-30 19:08:14

航空技术专用名词介绍(飞行性能.边界层分离.变后掠翼技术.音速巡航)

飞行性能

在对飞机进行介绍时,我们常常会听到或看到诸如“活动半径”、“爬升率”、“巡航速度”这样的名词,这些都是用来衡量飞机飞行性能的术语。简单地说,飞行性能主要是看飞机能飞多快、能飞多高、能飞多远以及飞机做一些机动飞行(如筋斗、盘旋、战斗转弯等)和起飞着陆的能力。

速度性能  最大平飞速度:是指飞机在一定的高度上作水平飞行时,发动机以最大推力工作所能达到的最大飞行速度,通常简称为最大速度。这是衡量飞机性能的一个重要指标。

最小平飞速度:是指飞机在一定的飞行高度上维持飞机定常水平飞行的最小速度。飞机的最小平飞速度越小,它的起飞、着陆和盘旋性能就越好。

巡航速度:是指发动机在每公里消耗燃油最少的情况下飞机的飞行速度。这个速度一般为飞机最大平飞速度的70%~80%,巡航速度状态的飞行最经济而且飞机的航程最大。这是衡量远程轰炸机和运输机性能的一个重要指标。

当飞机以最大平飞速度飞行时,此时发动机的油门开到最大,若飞行时间太长就会导致发动机的损坏,而且消耗的燃油太多,所以一般只是在战斗中使用,而飞机作长途飞行时都是使用巡航速度。

高度性能  最大爬升率:是指飞机在单位时间内所能上升的最大高度。爬升率的大小主要取决与发动机推力的大小。当歼击机的最大爬升率较高时,就可以在战斗中迅速提升到有利的高度,对敌机实施攻击,因此最大爬升率是衡量歼击机性能的重要指标之一。

理论升限:是指飞机能进行平飞的最大飞行高度,此时爬升率为零。由于达到这一高度所需的时间为无穷大,故称为理论升限。

实用升限:是指飞机在爬升率为5m/s时所对应的飞行高度。升限对于轰炸机和侦察机来说有相当重要的意义,飞得越高就越安全。

飞行距离  航程:是指飞机在不加油的情况下所能达到的最远水平飞行距离,发动机的耗油率是决定飞机航程的主要因素。在一定的装载条件下,飞机的航程越大,经济性就越好(对民用飞机),作战性能就更优越(对军用飞机)。

活动半径:对军用飞机也叫作战半径,是指飞机由机场起飞,到达某一空中位置,并完成一定任务(如空战、投弹等)后返回原机场所能达到的最远单程距离。飞机的活动半径略小于其航程的一半,这一指标直接构成了歼击机的战斗性能。

续航时间:是指飞机耗尽其可用燃料所能持续飞行的时间。这一性能指标对于海上巡逻机和反潜机十分重要,飞得越久就意味着能更好地完成巡逻和搜索任务。

飞机起飞着陆的性能优劣主要是看飞机在起飞和着陆时滑跑距离的长短,距离越短则性能优越

边界层分离

当流体流过物体的时候,由于流体本身的粘性,靠近物体表面的流体的速度为零,而离开物体表面一定距离的流体的速度则不受粘性影响,此处的流动可以按照无粘来处理。在物面和可以按无粘处理的流体之间的这一部分流体就是边界层。

边界层是一个薄层,它紧靠物面,沿物面法线方向存在着切向速度的梯度,并因此而产生了粘性应力。粘性应力对边界层的流体来说是阻力,所以随着流体沿物面向后流动,边界层内的流体会逐渐减速,增压。由于流体流动的连续性,边界层会变厚以在同一时间内流过更多的低速流体。因此边界层内存在着流向的逆压梯度,流动在逆压梯度作用下,会进一步减速,最后整个边界层内的流体的动能都被粘性应力给耗散掉,不能再朝下游流动了,然而远前方的还未减速的边界层还在源源不断地追赶上来。就向被堵塞的水池的水会溢出一样,边界层内的流体也会因为无法继续贴着物面流动而“溢出”—边界层离开了物面,它分离了。边界层分离之后,它将从紧靠物面的地方抬起进入主流,与主流发生参混。结果是整个参混区域的压力趋于一致。

由上面的原理我们可以知道,边界层要分离必须满足两个条件,一个是流体有粘性,第二个是流体必须流过物面。

边界层分离如果发生在机翼上将产生很严重的后果,那就是失速。边界层分离还会使机翼的阻力大大增加,机翼被设计成园头尖尾的流线型就是为了减小阻力。在高亚音速飞机上采用的超临界翼型,也是为了避免边界层的分离。

航空科技人员为了克服边界层分离所做的努力,贯穿了近代航空的发展历程,始终是推进航空科技发展的重要动力之一。

变后掠翼技术

机翼是飞机上一个极其重要的部件,飞机的升力基本上都是由机翼产生的。从1903年莱特兄弟的第一架飞机完成动力飞行之后,人们便投入了大量的精力到提高飞机的速度上,飞机的速度基本上每十年便翻一番,从最初的每小时几十公里到如今的超音速飞行,在这中间,机翼扮演了一个重要的角色。

早期的飞机气动外形差,而且十分笨拙,以双翼机为主,这是因为当时人们面临的主要飞行难题在于获得足够的升力。升力产生原理告诉我们,机翼的面积越大,升力就越大,由于当时的机翼材料强度不够,因此只能给飞机装上两层乃至三层机翼,这样的机翼阻力太大,当然没有办法飞得快。

为了获得高速飞行,除了提高发动机的推力外,整个飞机外形必须尽可能设计成流线型,以减小飞行时的阻力。作为外形的重要组成部分--机翼就必须设计成能够产生大升力、小阻力的形状。

机翼的主要参数有翼展l、翼弦b、前缘后掠角χ、展弦比λ等(如图所示)。翼展是指机翼左右翼尖之间的长度;翼弦是指机翼沿机身方向的弦长,除了矩形机翼外,机翼不同地方的翼弦是不一样的;前缘后掠角是指机翼前缘与机身轴线的垂线之间的夹角;展弦比λ是翼展l和平均翼弦的比值。

由空气动力学的理论和实践可知,低速情况下比较适合采用大展弦比的平直机翼;高亚音速时则应该采用后掠翼;超音速飞行时就必须采用小展弦比的机翼(如三角翼)以便减小由于超音速而急剧增加的阻力。

然而,超音速飞机只有在战斗中才以最大速度飞行,其余大部分时间还是以较低的速度飞行,而且每次飞行总需要起飞和降落。这就产生了一个难题,究竟按哪个速度范围设计机翼呢?变后掠翼技术便是为解决这一问题而提出的,它可以使飞机在飞行过程中按照飞行速度的大小自动改变机翼的后掠角,这样既可以满足高速飞行的需要,也可以使飞机有良好的低速性能和起飞滑跑能力。变后掠翼技术常常用于多用途战斗机和轰炸机,例如前苏联的米格-23、米格-27、苏-24、图-160,美国的F-111、F-14A、B-1B以及英、德、意三国联合研制的狂风(Tornado)等等。

图中是F-14A“雄猫”舰载超音速战斗机的解剖图,可见变后掠翼由固定的内翼和可动的外翼组成,二者用转动枢纽联接。此外机翼前面还增设了可伸缩的小翼,用来改善变后掠翼的操纵性。在飞行中,F-14A的机翼前缘后掠角可以从20度变到68度;而在舰上停放时,后掠角最大可达75度,可以减少在航空母舰上所占的面积。此外,由于在航空母舰上起飞和着陆距离较短,因此要求舰载机有良好的起飞着陆性能,否则就要一头扎进大海了,F-14A采用变后掠翼技术正好能满足这一要求。

变后掠翼的优点十分显著,但其缺点是转动机构复杂,使机翼的质量增大,同时可靠性也有所降低。

音速巡航

超音速巡航能力,是要求飞机具有在发动机不开加力的情况下,能在M1.5以上做超过30分钟的超音速飞行。

目前的常规战斗机,只有打开加力时才能做超音速飞行,而且耗油量会猛增1-2倍。超音速飞行时间只有几分钟,而且机动性也较差。而具有超音速巡航能力的飞机,可以克服以上不足,大大提高其作战效能:可以更快的速度飞抵战区执行任务;可以高速脱离战区摆脱敌机攻击;可以外推拦截线,使敌方轰炸机和攻击机在更远处被拦截;可以超音速状态发射导弹扩大攻击区。

由此可见,具有超音速巡航能力将是第四代战斗机所必须具备的技术指标。美国的第四代战斗机F-22就具有超音速巡航能力。

那么怎么才能使战斗机具有超音速巡航能力呢?主要措施有两条:一是采用先进的气动外形设计,使飞机的阻力尽量减少:翼身融合体技术就是一种,它能提高飞机的升阻比,减少超、跨音速波阻。二是采用性能先进的发动机,使发动机最大推力大,具有较好的速度特性。从目前研制的水平来看,最佳方案是选用小流量比加力涡扇发动机。

美国的F-22飞机之所以具有真正有效的超音速巡航能力,首先是采用了先进的气动外形设计。主要内容有:翼身融合技术;大根梢比的切尖菱形机翼,前缘后掠角为42度,后缘前掠角为17度,襟翼前缘和主翼后缘均各带弧度;保形天线、保形武器舱和菱形进气道等等,这些设计使飞机气动外形干净光滑,气动阻力小。

其次,是采用了先进的动力装置。该机装有两台F119加力涡扇发动机。由于发动机在设计中采用耐高温材料和先进热循环技术,将涡轮前燃气温度提高到1853-1923K,总增压比提高到25,因而产生的推力大(单台最大推力为104.5千牛(即为10663公斤)。使其有足够的剩余推力。同时,又因其流量比小(只有0.15-0.25),使其速度特性得到改善。不存在推力不够和过分耗油问题,所以,在不加力的情况下就可使飞机飞行速度达到超音速,而使它具有超音速巡航能力。

mac 发表于 2007-1-1 14:35:44

要注明是转载,有图片最好!

RPG339 发表于 2007-1-3 10:00:08

不好意思.我忘了是那里的了,是我收藏好久的..不知道出处了!

AceL4D 发表于 2007-1-3 14:33:48

哦,好帖,顶~

regn 发表于 2007-1-20 09:40:39

多谢分享,顶一个。

kffx66 发表于 2011-1-27 20:10:14

感谢分享
学习中
基础学习内容
页: [1]
查看完整版本: 航空技术专用名词介绍(飞行性能.边界层分离.变后掠翼技术.音速巡航)